32021中3・多項式の因数分解・計算問題・因数分解の公式1-1

計算問題 》因数分解の公式1①

次の式を因数分解しなさい。

(1)   $x^{2}+5x+6$

(2)   $x^{2}+8x+12$

(3)   $x^{2}+12x+32$

(4)   $x^{2}-6x+8$

(5)   $x^{2}-10x+24$

(6)   $x^{2}-16x+48$

解答・解説

因数分解の公式①

公式1$x^{2}+(\,a+b\,)x+ab=(\,x+a\, )(\, x+b\,)$

(1) $\quad\;\,\begin{eqnarray}x^{2}+5x+6\end{eqnarray}\;\;$

$\;\;\begin{eqnarray}&=&x^{2}+ \color{red}(\,2+3\,)\color{black}x+ \color{red}(\,2\times 3\,)\\[6pt]&=&(\,x+2\,)(\,x+3\,)\end{eqnarray}\;\;$

$(\,x+2\,)(\,x+3\,)$


(2) $\quad\;\,\begin{eqnarray}x^{2}+8x+12\end{eqnarray}\;\;$

$\;\;\begin{eqnarray}&=&x^{2}+ \color{red}(\,2+6\,)\color{black}x+\color{red}(\,2\times 6\,)\\[6pt]&=&(\,x+2\,)(\,x+6\,)\end{eqnarray}\;\;$

$(\,x+2\,)(\,x+6\,)$


(3) $\quad\;\,\begin{eqnarray}x^{2}+12x+32\end{eqnarray}\;\;$

$\;\;\begin{eqnarray}&=&x^{2}+ \color{red}(\,4+8\,)\color{black}x+\color{red}(\,4\times 8\,)\\[6pt]&=&(\,x+4\,)(\,x+8\,)\end{eqnarray}\;\;$

$(\,x+4\,)(\,x+8\,)$


(4) $\quad\;\,\begin{eqnarray}x^{2}-6x+8\end{eqnarray}\;\;$

$\;\;\begin{eqnarray}&=&x^{2}+ \color{red}\{(-2)+(-4)\} \color{black}x+ \color{red}\{(-2) \times (-4)\} \\[6pt]&=&(\,x-2\,)(\,x-4\,)\end{eqnarray}\;\;$

$(\,x-2\,)(\,x-4\,)$


(5) $\quad\;\,\begin{eqnarray}x^{2}-10x+24\end{eqnarray}\;\;$

$\;\;\begin{eqnarray}&=&x^{2}+ \color{red}\{(-4)+(-6)\} \color{black}x+ \color{red}\{(-4) \times (-6)\} \\[6pt]&=&(\,x-4\,)(\,x-6\,)\end{eqnarray}\;\;$

$(\,x-4\,)(\,x-6\,)$


(6) $\quad\;\,\begin{eqnarray}x^{2}-16x+48\end{eqnarray}\;\;$

$\;\;\begin{eqnarray}&=&x^{2}+ \color{red}\{(\,-4\,)+(\,-12\,)\} \color{black}x+ \color{red}\{(\,-4\,) \times (\,-12\,)\}\\[6pt]&=&(\,x-4\,)(\,x-12\,)\end{eqnarray}\;\;$

$(\,x-4\,)(\,x-12\,)$