32013中3・多項式の因数分解・計算問題・分配法則3

計算問題 》分配法則③

次の式を因数分解しなさい。

(1)   $2x^{3}-x^{2}y^{2}+3x^{2}y$

(2)   $4a^{3}b^{2}-8a^{3}b+12a^{2}b^{2}$

(3)   $-6x^{3}y^{2}z+3x^{2}y^{2}z^{2}+9xy^{2}z$

解答・解説

因数分解の手順〔 分配法則 〕

分配法則を使って,共通な因数をくくり出します。

(1) $\;\;\;\begin{eqnarray}2x^{3}-x^{2}y^{2}+3x^{2}y\end{eqnarray}$

$\;\;\;\begin{eqnarray}&=&\color{red}x^{2} \color{black} \times 2x + \color{red}x^{2} \color{black} \times (\,-y^{2}\,) + \color{red}x^{2} \color{black} \times 3y\\[6pt]&=&\color{red}x^{2}\color{black}(\,2x-y^{2}+3y\,)\end{eqnarray}\;\;$

$x^{2}(\,2x-y^{2}+3y\,)$


(2) $\;\;\;\begin{eqnarray}4a^{3}b^{2}-8a^{3}b+12a^{2}b^{2}\end{eqnarray}\;\;$

$\;\;\;\begin{eqnarray}&=&\color{red}4a^{2}b\color{black} \times ab +\color{red}4a^{2}b\color{black} \times (\,-2a\,) +\color{red}4a^{2}b\color{black} \times 3b\\[6pt]&=&\color{red}4a^{2}b\color{black}(\,ab-2a+3b\,)\end{eqnarray}\;\;$

$4a^{2}b(\,ab-2a+3b\,)$


(3) $\;\;\;\begin{eqnarray}-6x^{3}y^{2}z+3x^{2}y^{2}z^{2}+9xy^{2}z\end{eqnarray}\;\;$

$\;\;\;\begin{eqnarray}&=&\color{red}-3xy^{2}z\color{black} \times 2x^{2} \color{red}-3xy^{2}z\color{black} \times (\,-xz\,) \color{red}-3xy^{2}z\color{black} \times (\,-3\,) \\[6pt]&=&\color{red}-3xy^{2}z\color{black}(\,2x^{2}-xy-3\,)\end{eqnarray}\;\;$

$-3xy^{2}z(\,2x^{2}-xy-3\,)$