31041中3・多項式の展開・計算問題・展開の公式3-1
計算問題 》展開の公式3①
次の式を展開しなさい。
(1) $(\,x+3\,)(\,x-3\,)$
(2) $(\,x-10\,)(\,x+10\,)$
(3) $(\,7+a\,)(\,7-a\,)$
(4) $(\,x-9\,)(\,9+x\,)$
(5) $(\,x-0.4\,)(\,x+0.4\,)$
(6) $\Bigl(\,x+\dfrac{1}{\;6\;}\,\Bigr)\Bigl(\,x-\dfrac{1}{\;6\;}\,\Bigr)$
解答・解説
(1) $\quad\;\,\begin{eqnarray}(\,x+3\,)(\,x-3\,)\end{eqnarray}\;\;$
$\;\;\begin{eqnarray}&=&x^{2}-3^{2}\\[6pt]&=&x^{2}-9\end{eqnarray}\;\;$
答$x^{2}-9$
(2) $\quad\;\,\begin{eqnarray}(\,x-10\,)(\,x+10\,)\end{eqnarray}\;\;$
$\;\;\begin{eqnarray}&=&x^{2}-10^{2}\\[6pt]&=&x^{2}-100\end{eqnarray}\;\;$
答$x^{2}-100$
(3) $\quad\;\,\begin{eqnarray}(\,7+a\,)(\,7-a\,)\end{eqnarray}\;\;$
$\;\;\begin{eqnarray}&=&7^{2}-a^{2}\\[6pt]&=&49-a^{2}\end{eqnarray}\;\;$
答$49-a^{2}$
(4) $\quad\;\,\begin{eqnarray}(\,x-9\,)(\,9+x\,)\end{eqnarray}\;\;$
$\;\;\begin{eqnarray}&=&(\,x-9\,)(\,x+9\,)\\[6pt]&=&x^{2}-9^{2}\\[6pt]&=&x^{2}-81\end{eqnarray}\;\;$
答$x^{2}-81$
(5) $\quad\;\,\begin{eqnarray}(\,x-0.4\,)(\,x+0.4\,)\end{eqnarray}\;\;$
$\;\;\begin{eqnarray}&=&x^{2}-0.4^{2}\\[6pt]&=&x^{2}-0.16\end{eqnarray}\;\;$
答$x^{2}-0.16$
(6) $\quad\;\,\begin{eqnarray}\Bigl(\,x+\frac{1}{\;6\;}\,\Bigr)\Bigl(\,x-\frac{1}{\;6\;}\,\Bigr)\end{eqnarray}$
$\;\;\begin{eqnarray}&=&x^{2}-\Bigl(\,\frac{1}{\;6\;}\,\Bigr)^{2}\\[6pt]&=&x^{2}-\frac{1}{\;36\;}\end{eqnarray}\;\;$
答$x^{2}-\dfrac{1}{\;36\;}$